High-Precision Anchored Accumulators for Reproducible Floating-Point Summation

ARM

David Lutz and Neil Burgess

Kulisch accumulators

- treat FP numbers and products as very wide fixed-point numbers
- use a 4288-bit accumulator!
- 4092 possible locations for first significand bit
- 105 fraction bits
- extra bits so as to avoid overflow
- 67 64-bit words
- these additions are associative, and the 4288 -bit result is exact

Reducing exponent range

- most problems do not require the full exponent range
- galaxies or subatomics?
- many programmers use FP for convenience
- small values may well be unimportant
- programmers can know \& benefit from knowing these ranges

What is a typical range?

- 100 bits suffices for many HPC applications" (D. Bailey, 2013 ARITH keynote)
. "most problems fit in the range 10^{-25} to 10^{30}, a span of about 183 bits" (LANL)
- "I28-bit integers are probably sufficient for most uses." (LANL again, SCI5)
- "... in most cases we're around the 10^{-15} tolerance $\left[2^{-50}\right.$] because of machine epilson, compiler rounding/optimization etc with results in a tighter range with lower exponents. (Sandia)

Where are we going to get I00 or 200 bit integers?

- SIMD units are close approximations
- Central concept: treat vector of 64-bit values as one long integer
- ARM NEON is 128 bits
- ARM SVE (just announced) I28 to 2048 bits

High-Precision Anchored (HPA) Numbers

- An HPA number comprises:
- a long 2's-complement integer, containing 100-200 (or more) bits
- an anchor that says how to interpret those bits
- a programmer picks the range for the application area or problem
- anchor is analogous to a floating-point exponent, but is fixed for a given problem
- anchor represents the least significant exponent value we are interested in
- the length of the long integer then gives us a range over which we can accumulate exactly
- HPA accumulation is associative, reproducible, and parallelizable

Adding, Subtracting, Converting FP to HPF

FP Accumulation

- FP2HPA convert \& add is a 2-cycle latency, fully pipelined operation on CPUs
- add n (or 2 n) items in $\mathrm{n}+\mathrm{I}$ cycles, vs. adding n items in 3 n cycles for A 72 Neon
- establishing exponent range is the only additional task for a programmer
- these adds are associative, so no dependencies \therefore fully parallelizable

	I	2	3	4	5
ADD_HPA_FP (Vi,Vm,FI)	Convert	Add			
ADD_HPA_FP (Vi,Vm,F2)		C	A		
ADD_HPA_FP (Vi,Vm,F3)			C	A	
ADD_HPA_FP (Vi,Vm,F4)				C	A

Sum of FP products

- given HPA number (Vi, Vm) and FP numbers FI and F2
- MUL_HPA_FP (Vi,Vm, FI, F2): store FI*F2 as an HPA number
- compute FI * F2 without rounding
- each lane gets a copy of the unrounded product (or computes the product) and Vm
- A product will span more lanes than an FP64 number
- unrounded product converted to HPA using same technique as for FP numbers
- fully pipelined
- MAC_HPA_FP (Vi,Vm, FI, F2): add FI*F2 to an HPA number

What If the Anchor Range is Wrong?

- on the low end, some numbers may convert as zeros or lose accuracy
- this could be a deliberate choice to avoid insignificant data
- addition is still associative, parallelizable, and reproducible in this case
- on the high end, conversion will signal overflow
- this is a problem that needs to be fixed
- set an ovf flag? trap?
- ... OR scan input set for maximum value

Simple Programming Model

- need to pick an expected exponent range (or scan data set for max. value)
- set up exponent base value(s) covering that range
- software library could make it even simpler
- convenience of FP without the problems of FP
- suitable for NEON or SVE
- no need to restrict numbers to FP accuracy
- e.g., \geq I 28 -bit accurate π could be useful in range reduction

Paradigm Shift?

- "the fast drives out the slow even if the fast is wrong." - W. Kahan
- but what if the fast is right?
- why deal with the irreproducibility \& incorrectness of FP accumulation?
- FP accumulation that is reproducible, parallelizable, faster, and correct
- Is this approach useful?

Submission deadline: 31 December 2016
www.arith24.arithsymposium.org

Extra I: why are we using double precision?

- Single precision: around 10^{-38} to 10^{38}
- Do measurements have more than 24 significant bits of accuracy?
- My guess: we use DP because of associativity problems
- HPA would allow us to use SP:
- double memory bandwidth
- double computation bandwidth
- half the power per flop
- exact, reproducible sums and sums of products

Extra 2: multi-lane addition/subtraction

- Possible, but not ideal for SIMD paradigm
- Requires cross-lane carries

Redundant Long Integer Arithmetic

- Allow vector elements to "overlap"
- For example, allowing 8 bits' overlap between lanes:

- Provide headroom in each lane to accommodate carries
- Treat each lane as a 2's-complement number

Redundant Long Integer Arithmetic

- Can complete 2^{8} - $\mathrm{I}=255$ additions/subtractions without carries needing to transfer between lanes
- Periodically, need to "reset" carries
- Set to all O's by sequential addition of overlap bits from lower lane to next higher lane
- Full-width 2's-complement number

Accum[63:0]
Accum[119:56]
Accum[175:II2]
Accum[231:168]

- Alternative parallel technique restricts overlap values to $\{+I, 0,-I\}$

