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Kulisch accumulators

▪ treat FP numbers and products as very wide fixed-point numbers 
▪ use a 4288-bit accumulator! 
▪ 4092 possible locations for first significand bit 
▪ 105 fraction bits 
▪ extra bits so as to avoid overflow 
▪ 67  64-bit words 

▪ these additions are associative, and the 4288-bit result is exact
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Reducing exponent range
▪ most problems do not require the full exponent range 
▪ galaxies or subatomics? 

▪ many programmers use FP for convenience 
▪ small values may well be unimportant 
▪ programmers can know & benefit from knowing these ranges
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What is a typical range?

▪ 100 bits suffices for many HPC applications” (D. Bailey, 2013 ARITH keynote) 
▪ “most problems fit in the range 10-25 to 1030, a span of about 183 bits” (LANL) 
▪ “128-bit integers are probably sufficient for most uses.” (LANL again, SC15) 
▪ “... in most cases we're around the 10-15 tolerance [2-50] because of machine 

epilson, compiler rounding/optimization etc with results in a tighter range with 
lower exponents. (Sandia)
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Where are we going to get 100 or 200 bit integers?

▪ SIMD units are close approximations 
▪ Central concept: treat vector of 64-bit values as one long integer 
▪ ARM NEON is 128 bits 
▪ ARM SVE (just announced) 128 to 2048 bits
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High-Precision Anchored (HPA) Numbers

▪ An HPA number comprises: 
▪ a long 2’s-complement integer, containing 100-200 (or more) bits 
▪ an anchor that says how to interpret those bits

▪ a programmer picks the range for the application area or problem 
▪ anchor is analogous to a floating-point exponent, but is fixed for a given problem 
▪ anchor represents the least significant exponent value we are interested in 
▪ the length of the long integer then gives us a range over which we can accumulate exactly 

▪ HPA accumulation is associative, reproducible, and parallelizable
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CONFIDENTIAL

Adding, Subtracting, Converting FP to HPF

ADD_HPA_FP (Vi, Vm, F) 
SUB_HPA_FP (Vi, Vm, F) 
CVT_HPA_FP (Vi, Vm, F)
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FP Accumulation

▪ FP2HPA convert & add is a 2-cycle latency, fully pipelined operation on CPUs 
▪ add n (or 2n) items in n+1 cycles, vs. adding n items in 3n cycles for A72 Neon 
▪ establishing exponent range is the only additional task for a programmer 
▪ these adds are associative, so no dependencies ∴fully parallelizable

1 2 3 4 5

ADD_HPA_FP (Vi,Vm,F1) Convert Add

ADD_HPA_FP (Vi,Vm,F2) C A

ADD_HPA_FP (Vi,Vm,F3) C A

ADD_HPA_FP (Vi,Vm,F4) C A
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Sum of FP products

▪ given HPA number (Vi, Vm) and FP numbers F1 and F2 
▪ MUL_HPA_FP (Vi, Vm, F1, F2): store F1*F2 as an HPA number 
▪ compute F1 * F2 without rounding 
▪ each lane gets a copy of the unrounded product (or computes the product) and Vm 
▪ A product will span more lanes than an FP64 number 

▪ unrounded product converted to HPA using same technique as for FP numbers 
▪ fully pipelined 

▪ MAC_HPA_FP (Vi, Vm, F1, F2): add F1*F2 to an HPA number
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What If the Anchor Range is Wrong?

▪ on the low end, some numbers may convert as zeros or lose accuracy 
▪ this could be a deliberate choice to avoid insignificant data 
▪ addition is still associative, parallelizable, and reproducible in this case 

▪ on the high end, conversion will signal overflow 
▪ this is a problem that needs to be fixed  
▪ set an ovf flag?  trap? 
▪ ... OR scan input set for maximum value
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Simple Programming Model

▪ need to pick an expected exponent range (or scan data set for max. value) 
▪ set up exponent base value(s) covering that range 
▪ software library could make it even simpler 

▪ convenience of FP without the problems of FP 
▪ suitable for NEON or SVE 

▪ no need to restrict numbers to FP accuracy 
▪ e.g., ≥128-bit accurate π could be useful in range reduction
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Paradigm Shift?

▪ “the fast drives out the slow even if the fast is wrong.” - W. Kahan 
▪ but what if the fast is right? 

▪ why deal with the irreproducibility & incorrectness of FP accumulation? 
▪ FP accumulation that is reproducible, parallelizable, faster, and correct 

▪ Is this approach useful?
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Extra 1: why are we using double precision?

▪ Single precision: around 10-38 to 1038 
▪ Do measurements have more than 24 significant bits of accuracy? 
▪ My guess:  we use DP because of associativity problems 
▪ HPA would allow us to use SP: 
▪ double memory bandwidth 
▪ double computation bandwidth 
▪ half the power per flop 
▪ exact, reproducible sums and sums of products



CONFIDENTIAL

Extra 2: multi-lane addition/subtraction

§ Possible, but not ideal for SIMD paradigm 
§ Requires cross-lane carries

!
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Redundant Long Integer Arithmetic

▪ Allow vector elements to “overlap” 
▪ For example, allowing 8 bits’ overlap between lanes: 

▪ Provide headroom in each lane to accommodate carries 
▪ Treat each lane as a 2’s-complement number

Accum[255:192] Accum[191:128] Accum[127:64] Accum[63:0]

Accum[119:56]

Accum[175:112]

Accum[231:168]

overlaps are 8-b 
carry-save numbers
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Redundant Long Integer Arithmetic

▪ Can complete 28 – 1 = 255 additions/subtractions without carries needing to 
transfer between lanes 

▪ Periodically, need to “reset” carries  
▪ Set to all 0’s by sequential addition of overlap bits from lower lane to next 

higher lane 
▪ Full-width 2’s-complement number 

▪ Alternative parallel technique restricts overlap values to {+1, 0, -1}

Acc[55:0]

Acc[167:112]

Acc[231:168]

+ 0

+ 0

+ 0

Acc[111:56]

Accum[63:0]

Accum[175:112]

Accum[231:168]

Accum[119:56]


